Abstract

Pharmaceutically active compounds (PhACs) are released into the environment where they undergo soil sorption, photodegradation, and chemical transformation into structurally similar compounds. Here we report on studies of naproxen (NAP) and ibuprofen (IBP), two widely-used nonsteroidal anti-inflammatory drugs (NSAIDS), in soils and water. Organic matter (OM) was observed to play an important role in each of these processes. Sorption was observed to be stronger and nonlinear in higher OM soils while weaker but still significant in lower OM, higher clay soils; the amphiphilic nature of these two PhACs combined with the complex charged and nonpolar surfaces available in the soil was observed to control the sorption behavior. Simulated solar photodegradation rates of NAP and IBP in water were observed to change in the presence of humic acid or fulvic acid. Structural analogs of each compound were observed as the result of chemical transformation in both photoexposed aqueous solutions and non-photoexposed soil. Two of these transformation products were detected as both soil and photo transformation products for both PhACs. OM was observed to influence the chemical transformation of both pharmaceuticals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.