Abstract

In this work we use the vapor-sorption equilibrium data to show the degree of solvent upturn in each solvent–polymer system. For this purpose, 23 isothermal data sets for four polymer + solvent binaries, one block copolymer + solvent binary and for the corresponding polymer pairs have been used in the temperature range of 25–70 °C. Solvents studied are benzene, carbon tetrachloride, chloroform and pentane. Homopolymers studied are polyisobutylene, poly(ε-caprolactone), poly(ethylene oxide), n-heptadecane, polystyrene, poly(vinyl chloride), poly(vinyl methyl ether), and n-tetracosane. According to these data sets, solvent weight fraction in the polymer is plotted against solvent-vapor activity that is calculated assuming an ideal gas phase of pure solvent vapor neglecting the vapor pressure of the polymer. We use the Flory–Huggins theory to obtain dimensionless interaction parameter, χ. Also the Zimm–Lundberg clustering theory and non-ideality thermodynamic factor, Γ are used to interpret the equilibrium data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.