Abstract

Activated carbon has widespread application in antibiotic-loaded wastewater treatment in recent years, owing to its developed pore structure, high superficies reactivity, and excellent mechanical and chemical stability. In this work, sorption experiments of four representative antibiotics, including sulfadiazine (SDZ), norfloxacin (NOR), metronidazole (MDE), and tetracycline (TC), over granular activated carbon (GAC), which was made from maize straw, were firstly studied. Kinetics, mechanism, and isotherm models related to the sorption process were employed. Results revealed that the sorption capacity by GAC followed the order SDZ > NOR > MDE > TC. The sorption kinetics of the four antibiotics well conformed to the pseudo-second-order model. Both the Weber-Morris intraparticle diffusion and Boyd kinetic models conveyed the information that film diffusion was dominant in the sorption process. The sorption isotherm was better fitted to the Langmuir model. This research may pave a basic way for removing antibiotics in municipal and industrial wastewater by activated carbon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.