Abstract

Understanding sorption processes is fundamental for the prediction of radionuclide migration in the surroundings of a deep geological disposal of high-level nuclear wastes. Pyrite (FeS 2) is a mineral phase often present as inclusions in temperate soils. Moreover, it constitutes an indirect corrosion product of steel, a containment material that is candidate to confine radionuclides in deep geological disposals. The present study was thus initiated to determine the capacity of pyrite to immobilize Sr(II) and Eu(III). An air oxidized pyrite and a freshly acid-washed (non-oxidized) pyrite were used in background electrolytes of varying reducing–oxidizing ability (NaCl, NH 3OHCl, and NaClO 4) to study the sorption of both cationic species. The sorptive capacity of pyrite appeared directly correlated to the oxidation of the surface. Non-oxidized pyrite had nearly no affinity for the studied cations whereas Sr(II) and Eu(III) species were significantly retained by oxidized pyrite surface. Using the surface complexation theory, sorption mechanisms were modeled with the Fiteql v3.2 and the Jchess 2.0 codes. Sorption of both Sr and Eu was well fitted, assuming hydroxylated species as the major surface species. This study demonstrates that not only the components of a barrier but also the redox conditions and speciations should be well characterized to predict transport of contaminants in the surrounding of a nuclear wastes disposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.