Abstract

Microplastics (MPs) as the carrier of pharmaceuticals in aquatic environments have been concerned in recent years. However, the influences of environmental factors on the sorption of pharmaceuticals onto MPs, particularly the effect of the simultaneous sorption by MPs of different pharmaceuticals in multi-solute systems are still unclear. This study investigated the influences of pH, aging of MPs, and competition of pharmaceuticals on the sorptions of sulfamethoxazole (SMX), propranolol (PRP), and sertraline (SER) onto polyethylene MPs. In the 96 h pH-dependent experiments, the sorptions of the three pharmaceuticals were mainly driven by hydrophobic interaction. Besides, the ionization states of the three pharmaceuticals varied with the pH ranging from 2.00 to 12.00, and electrostatic interaction would affect the sorption affinities of the pharmaceuticals in different ionization states. In the aged MPs experiments, the MPs aged by UV irradiation showed a stronger sorption capacity than the pristine ones. Across the MPs under different UV irradiation durations, the 6 d aged MPs showed the highest sorption percentages of 23.0% and 17.6% for SER and PRP, respectively; for SMX, the highest sorption percentage of 5.4% was recorded with the 10 d aged MPs. In the multi-solute systems, the sorption kinetics of the three pharmaceuticals fit well with the pseudo-second-order model. The sorption quantities of the three pharmaceuticals onto MPs followed the order of SER cations (18.70 μg g−1) > SMX anions (7.83 μg g−1) > PRP cations (3.80 μg g−1) at pH 7.00. The good fitting of the Freundlich model suggested a multilayer sorption of the three pharmaceuticals onto MPs. The SER with higher hydrophobicity would preferentially be adsorbed onto MPs and influenced the subsequently sorption processes of the other pharmaceuticals via electrostatic interactions. This may change the environmental fate of the contaminants, which should be carefully considered in future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.