Abstract

In the present study two synthetic mesoporous carbons, a highly ordered CMK-3 sample with hexagonal structure and a disordered mesoporous carbon (denoted DMC) were investigated for the sorption of Remazol Red 3BS (C.I. 239) dye in comparison to three commercial activated carbons and a HMS mesoporous silica with a wormhole pore structure. The structural, porosity and surface characteristics of the materials were evaluated using XRD, TEM, N 2 porosimetry, FT-IR spectroscopy and zeta-potential measurements. Optimal dye sorption occurred at pH ∼2. Equilibrium sorption data followed the Langmuir model and showed that the two synthetic mesoporous carbons exhibit higher sorption capacities ( q max ∼ 500–580 mg/g at 25 °C) in comparison to the commercial activated carbons which possessed either microporous (Takeda 5A and Calgon carbon) or combined micro-/mesoporous (Norit SAE-2) structures and to the HMS mesoporous silica. Thermodynamic parameters as the change in free energy, enthalpy, and entropy of sorption were also estimated. Kinetic studies were carried out and showed a rapid sorption of dye in the first ca. 30 min while equilibrium was reached after ca. 3 h. The sorption kinetics of dye was best described by a second-order kinetic model. A surfactant enhanced carbon regeneration (SECR) technique was used to regenerate the dye-loaded carbon sorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call