Abstract

The acid-activated sepiolite (ASEP) was prepared by physical purification and acid activation of natural sepiolite, and was characterized by XRD, FT-IR, SEM and N2 adsorption–desorption. The prepared ASEP was applied for the sorption of 60Co(II) from aqueous solutions. The sorption of 60Co(II) from aqueous solutions by ASEP was investigated as a function of contact time, solid content, pH, ionic strength, foreign ions, humic acid (HA) and temperature. The results indicated that the sorption of 60Co(II) on ASEP was strongly dependent on pH values. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation or ion exchange, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH. The presence of HA increased the sorption of 60Co(II) on ASEP at low pH values, and reduced the sorption at high pH values. The Langmuir and Freundlich models were applied to simulate the sorption of 60Co(II) at three temperatures of 298, 318 and 338 K. The thermodynamic parameters ( $$ \Updelta G^\circ ,\,\;\Updelta S^\circ $$ and $$ \Updelta H^\circ $$ ) calculated from the temperature dependent sorption isotherms indicated that the sorption of 60Co(II) on ASEP was an endothermic and spontaneous process. ASEP has a great application potential for cost-effective disposal of 60Co(II) from large volumes of aqueous solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call