Abstract
Fate and behavior of nonionic hydrophobic organic compounds (HOCs) in the environment is mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of HOCs in the environment. We used phenanthrene as a probe to explore the potential of reference smectites to sorb HOCs from aqueous solution. Batch experiments were used to construct phenanthrene sorption isotherms, and possible sorption mechanisms were inferred from the shape of the isotherms. Our results demonstrate that smectites can retain large amounts of phenanthrene from water. Phenanthrene sorption capacities of the reference smectites investigated in this study were comparable to those of soil clays containing a considerable amount of organic matter. Hectorite exhibited the highest sorption affinity and capacity followed by Panther Creek montmorillonite. The lack of correlation between Freundlich sorption constants (K'f) and indices of charge or hydrophobicity suggests that sorption of phenanthrene by smectites is primarily a physical phenomenon. Capillary condensation into a network of nanoor micropores created by quasicrystals is likely to be a dominant mechanism of phenanthrene retention by smectites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.