Abstract

Several studies have shown selective preservation of plant cuticular materials in soils. However, very little is known about their function as sorbents for the hydrophobic organic contaminants (HOCs) in the soil. In this study, we investigated the sorption and desorption of phenanthrene and atrazine by cuticular fractions of pepper (bulk, dewaxed, nonsaponifiable, and nonhydrolyzable) to better understand the sorptive activity of cuticular matter in soils. The bulk and dewaxed cuticles exhibited carbon-normalized distribution coefficients (Koc) for phenanthrene and atrazine in the range of that reported for soil humic substances, although both samples were rich in aliphatic structures. No hysteresis was observed in the desorption isotherms of either solute. The nonhydrolyzable residue exhibited a very high Koc value for atrazine, whereas the nonsaponifiable sample be exhibited the lowest Koc value for both sorbates. Based on solubility parameter data, it is suggested that the nonsponifiable sample be considered an intermediate between the physical and chemical mixture of pectin and cutan/lignin-like fractions, whereas the dewaxed cuticle is a chemical blending of cutin and pectin. The n-hexane-normalized sorption data suggest that the pepper cuticle can interact specifically with atrazine. This study leads to the conclusion that the contribution of aliphatic-rich plant biopolymers to the sorption of HOCs can be significant because of their preservation and accumulation in soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.