Abstract
In the present study, the sorption ability of three metal ions, lead, cadmium, copper, from aqueous solution by tea waste was investigated. Sorption of the evaluated toxic metals by tea waste was pH-dependent, and kinetic data for three metal ions not only indicated a quick sorption process but also were excellently represented by the pseudo-second-order model with all correlation coefficients R2 > 0.97. In addition, the sorption processes of three metal ions by tea waste in different temperatures could be described satisfactorily by both Langmuir and Freundlich isotherms. According to calculated results by the Langmuir equation, the maximum removal capacities of Pb(II), Cd(II), and Cu(II) were 33.49, 16.87, and 21.02 mg/g, respectively. Fourier transform infrared (FT-IR) analysis of the tea waste samples laden with different metals indicated that multiple functional groups were involved in the sorption of metal ions, and the carboxyl group (C═O) and bonded–OH group were primary binding sites in lead and cadmium removal, while the −CN stretching and the carboxyl group were primary binding sites in copper removal. All the results reported strongly implied the potential of tea waste as an economic and excellent bioadsorbent for removal of metal ions from contaminated waters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.