Abstract

This work describes the development of an environmental friendly functionalized polypropylene nonwoven geotextile (PP) in order to trap heavy metals in sediments and sludges. Chitosan was chosen as the sorbent because of its ability to trap heavy metals, of its natural origin (from shells), and of its low cost. PP was first functionalized with acrylic acid using a cold plasma process, in order to bring some reactive carboxylic functions onto the surface. Chitosan was then covalently grafted on the acrylic acid modified polypropylene. The functionalized surfaces were characterized by FTIR (Fourier Transform InfraRed) and chitosan was thus proven to be grafted. The ability of the functionalized textile to trap heavy metals was then investigated. Copper was chosen as the model heavy metal, and artificial solutions of CuSO4 were prepared for the experiments. Sorption studies among the concentration of copper in polluted solutions at 20°C were carried out with PP-g-AA-chitosan (Polypropylene-grafted-Acrylic acid-chitosan) in order to evaluate the maximum of absorption of this surface: the textile can chelate copper increasingly with the initial copper concentration until 800 ppm where it reaches a plateau at about 30 mg/L. The effects of pH and of the ionic strength (absorption in a NaCl containing solution) were finally investigated. The trapping of Cu 2+ decreases slowly when the ionic strength increases. For a seawater-like NaCl concentration of 30g/L, the textile still chelates about 20 mg/L of Cu 2+ . Finally, the optimum pH to trap the maximum amount of copper was determined to be 4.75, which corresponds to the optimum pH for the solubility of the chitosan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.