Abstract

Abstract The sorption capacities toward GR-S five commercial carbon blacks are in decreasing order: Spheron-6, Vulcan-1, Philblack-0, Sterling-105, Philblack-A. Apparently, the sorption is not related to surface area. The sorption on Vulcan-1 of GR-S from its solutions in seven different solvents or mixtures of solvents increases with decreasing solvent power for the rubber. The sorption curves of two “cold rubbers,” polymerized at −10 and +5° respectively, showed little difference from that of 50° GR-S. Previous heating of carbon black in nitrogen at 500 or 1100° increased the sorption by about 20 per cent over unheated carbon. Air-heating of carbon black at 425° did not cause a difference in the sorption from benzene solution, but produced an increase in the sorption of rubber from n-heptane solution. In the range 75% butadiene-25% styrene to 5% butadiene-95% styrene, there is practically no effect of the degree of unsaturation on the sorption. Polystyrene of high intrinsic viscosity exhibits a peculiar behavior with furnace blacks. Vulcan-1 sorbed microgel as well as the sol fraction from n-heptane solutions of GR-S containing microgel (conversion 74.7 and 81.5 per cent). There was no appreciable difference in the amount of sorption of rubber fractions having average molecular weights varying from 433,000 to 85,000. There is little change in the amount sorbed after two hours of shaking, but the intrinsic viscosity of the residual rubber decreases with time. The low molecular-weight rubber is sorbed more rapidly, but is slowly replaced by the more tightly sorbed high molecular weight fraction. Partial fractionation of a rubber sample can be achieved by allowing the rubber solution to flow through a column of weakly sorbing carbon black. A large portion of the sorbed rubber can be recovered from the column by washing it with a good solvent such as xylene. Bound rubber is produced by intimate mixing of equal parts of carbon black and rubber swollen in chloroform, when the mixture is dried in vacuum at 80° or at room temperature. Milling is not essential to get bound rubber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.