Abstract

With the development of nanotechnologies, a large number of nano-materials with novel properties are being released into the environment. However, little is known about their fate, transport, toxicity and interactions with organic matters in aqueous environment. In this study, nano-SiO 2 or kaolinite, coated with soil humic acid (SHA) and peat humic acid (PHA), were used as sorbents. The original and HA-coated nanoparticles were characterized for particle size, TEM and electrophoretic mobility. Sequential ultrafiltration (UF) was used to characterize the molecular size fractionations of dissolved HAs. Sorption data of atrazine (AT) under various solution concentration, ionic strength and pH were well fitted with Freundlich model. Sorption amount of AT on HA-coated nanoparticles was significantly lower than that on original particles. The sorption maximum appeared at I = 0.001 mol/l (NaNO 3), pH 3. Size of nanoparticle aggregates, conformation of HA and specific surface area were factors affecting the sorption process. The compressed conformation of HA was more favorable for HA sorption than expanded one. Size of aggregation was not a determinant factor for the sorption process, while the specific surface areas of nano-sorbent was an important one. Results indicated that HA plays an important role in the transport and toxicity of nanoparticles and AT in aqueous environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call