Abstract

The history of sorption and ion-exchange processes starts with the use of natural materials which properties were discovered coincidentally and ends with the age of polymer and anorganic—or synthetic sorbents specifically made for a particular project. Its objectives are focused on sorption of anthropogenic radionuclides originating from nuclear power plant operations (fission, activation, corrosion products and transuranium elements) on bentonites, zeolites, hydroxyapatites, magnetic sorbent, ferrocyanides, and silica sorbent. Bentonites from Slovak deposits should be used as part of multi-barrier system in deep geological repository for spent nuclear fuel and high level radioactive waste. Zeolites are used as molecular sieves, catalysts, ion-exchangers, sorbents, water softeners, in wastewater treatment, in chemistry industry, buildings. Hydroxyapatite is a suitable sorbent for heavy metals and radionuclides due to its low water solubility, high stability under reducing and oxidizing conditions, high specific surface area and good buffering properties. The leaching wastes from the Sereď hydrometallurgical plant represent a large stock of inexpensive, ready-to-use magnetic sorbent for the decontamination of soil or sediments in their common suspensions, followed by the magnetic separation and sorbent recycling. Insoluble ferrocyanides of nickel are highly selective sorbents for heavy alkali metals ions, and therefore can be used to separate cesium from liquid radioactve waste. Silica sorbents modified with imidazole can be used for the separation of cobalt ions from aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call