Abstract

The classic Langmuir and Freundlich sorption models and a dual-mode approach have been tested to study the sorption of aromatic molecules onto β-cyclodextrin polymers as well as onto analogous sucrose polymers, obtained using the same crosslinking agents (epichlorohydrin, succinyl chloride, toluene diisocyanate, and hexamethylene diisocyanate). The host–guest interaction of the sorbate within the cyclodextrin cavities corresponds to the hole-filling mechanism considered in the dual-mode approach, while the polymer crosslinking networks are capable of entrapping more sorbate molecules via partition. In some cases, when the sorption is governed by the inclusion within the cyclodextrin moieties, a simple Langmuir isotherm fits the data properly. The classic Freundlich equation is also appropriate when phenol is the sorbate because its interaction with β-cyclodextrin is less specific than that of 1-naphthol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.