Abstract

AbstractThe diffusion–sorption drying model has been developed as a physics‐based way to model the decreasing drying rate at low moisture contents. This new model is founded on the existence of different classes of water: free and bound water. The transition between these classes and the corresponding thermodynamics form distinct components of the drying model. This paper shows that the characteristics of the different classes of water and of the transition between them can be deduced from the GAB sorption isotherm. The parameters in the GAB sorption isotherm support the theory of localised sorption, establishing the existence of different classes of water. Moreover, the sorption mechanism retrieved from the GAB parameters is in accordance with the sorption mechanism, which is obtained from the moisture dependence of the net isosteric heat of sorption. This holds for experimental sorption data of corn and starch as well as for literature data on five vegetables and four fortified cassava products. An extremum in the net isosteric heat of sorption coincides with the transition between bound and free water, and the partition moisture content corresponds with the monolayer value derived from the GAB equation. This confirms that the GAB monolayer value can be chosen as model boundary between bound and free water. Moreover, it reveals that this method can be developed into a technique to estimate the bound water content in foods. Copyright © 2005 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.