Abstract

Solid oxide fuel cells (SOFC), as high-temperature fuel supply systems, are regarded as one of the most adaptable technologies in terms of efficiency, flexibility, and environmental friendliness. Catalytic propane partial oxidation is recognized as an efficient gas supply method for SOFC applications. However, incombustible by-product CO2 would decrease the purity of hydrogen, thereby reducing the power of fuel cells. Sorption-enhanced propane partial oxidation is an efficient way to adapt to SOFC operating conditions while improving hydrogen production and reducing carbon dioxide emissions. This paper introduces a cage-like porous Ce1-xCaxMO3-λ (M = Co, Fe and Cu) sorbent for providing high carbon dioxide sorption capacity and improving hydrogen purity over the Ni/Al2O3 catalyst. As obtained, Ce1-xCaxFeO3-λ and Ni/Al2O3 sorbent-catalyst performed the best, with the highest hydrogen yield up to 1654 μmol/gcat·s which was 1055 μmol/gcat·s higher than that of pure Ni/Al2O3. The produced reforming gas is served as a fuel in the proposed SOFC system. A maximum output power density of 581 mW/cm2 was reached. This work offered a simple and viable way of combining inexpensive and robust catalyst-sorbent for sorption-enhanced propane partial oxidation in terms of efficient indirect hydrogen supply toward SOFC power generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.