Abstract

Separation and isolation of radioactive cobalt ( 60Co), one of the main contributors towards the activity build up in nuclear reactors, is essential for radioactive waste volume reduction during nuclear reactor decontamination procedures. In this context, sorption of free and complexed Co(II), Cu(II) and nitrilotriacetic acid (NTA) on the biosorbent, chitosan was studied. A detailed investigation on the role of pH on sorption of Co(II), Cu(II) and NTA was done. Uptake capacities of the metal ions and NTA were measured within pH range of 2.0–7.0. At pH above 5, the NTA uptake capacities were found to be higher in presence of the metal ions than in their absence. Effect of NTA was found to be more pronounced on copper uptake than on cobalt uptake. Significant change in selectivity of chitosan towards metal ion uptake from NTA medium was observed with respect to change in pH. At pH 2.9, the uptake of cobalt was found to be more than that of copper, while the selectivity was reversed at pH 6.0. The respective selectivity coefficient ( k Co/Cu) values were found to be 2.06 and 0.072.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call