Abstract

The main objective of this study was to gain more detailed knowledge of how four selected polycyclic aromatic hydrocarbons (PAHs) interact on six nondegradable types of microplastics (MPs) and one biodegradable plastic (BP) in two water matrices. The results were evaluated using the popular Freundlich and Langmuir isotherm models, as well as a new modified mathematical model. The modified mathematical model was developed to additionally elucidate the adsorption mechanism, to investigate transfer kinetics of PAHs and to predict the variation of adsorption rate and capacity as a function of time. The adsorption kinetics of selected PAHs onto MPs and biodegradable plastic were described best by the pseudo-second order kinetic model (R2 = 0.810–0.999), implying that chemisorption is possibly the adsorption mechanism. The results of the adsorption isotherm study also indicated that adsorption of PAHs on selected types of microplastics was best described by the Langmuir model, implying that adsorption of PAHs is more dominant on powdered types of MPs in both synthetic and real water matrices. On the other hand, the lowest adsorption affinity was achieved for adsorption of PAHs on polylactic acid, indicating that this type of biodegradable plastic would have significantly less impact on the transport and distribution of PAHs through environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.