Abstract
Soil solution chemistry influences the sorption and transport behavior of hydrophobic organic compounds (HOCs) in soil. We used both batch and column studies to investigate the influence of ionic strengths (0.03 and 1.5 M) and flow velocities (12 and 24 cm h-1) on sorption and transport of naphthalene (NAP) in aggregated soil. Sorption parameters such as the Freundlich coefficient (Kf) and exponent (n) calculated from batch studies and column experiments were also compared. Retardation of NAP transport was greater at higher solution ionic strength, which may be attributed to greater sorption affinity due to enhanced aggregation of the sorbent. The effect of ionic strength on sorption of NAP observed in the batch study was consistent with the results from the column study. The Kf and n values obtained from the batch study for the two ionic strengths ranged from 7.8 to 13.7 and 0.68 to 0.80, respectively, whereas the Kf and n values obtained from the column study ranged from 7.9 to 9.9 and 0.73 to 0.85, respectively. The effluent breakthrough curve (BTC) of NAP at a flow rate of 24 cm h-1 showed significant chemical and physical nonequilibrium behavior, implying that a considerable amount of sorption in aggregated soil was time dependent when flow was relatively fast. The BTCs calculated with the parameters determined from batch studies compared poorly with the measured BTCs. The potential for nonequilibrium transport should be incorporated in models used for predicting the fate and transport of HOCs. Furthermore, caution is required when extrapolating the results from batch studies, especially for aggregated soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.