Abstract

A leading strategy for control of mercury emissions from combustion processes involves removal of elemental mercury from the flue gas by injection of activated carbon sorbent. After particulate capture and disposal in a landfill, it is critical that the captured mercury remains permanently sequestered in the sorbent. The environmental stability of sorbed mercury was determined on two commercial, activated carbons, one impregnated using gaseous sulfur, and on two activated carbons that were impregnated with sulfur by reaction with SO 2. After loading with mercury vapor using a static technique, the stability of the sorbed mercury was characterized by two leaching methods. The standard toxicity characteristic leaching procedure showed leachate concentrations well below the limit of 0.2 mg/L for all activated carbons. The nature of the sorbed mercury was further characterized by a sequential extraction scheme that was specifically optimized to distinguish clearly among the highly stable phases of mercury. This analysis revealed that there are two forms in which mercury is sequestered. In the sorbent that was impregnated by gaseous sulfur at a relatively low temperature, the mercury is present predominantly as HgS. In the other three sorbents, including two impregnated using SO 2, the mercury is predominantly present in the elemental form, physisorbed and chemisorbed to thiophene groups on the carbon surface. Both forms of binding are sufficiently stable to provide permanent sequestration of mercury in activated carbon sorbents after disposal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.