Abstract

AbstractHalogenated synthetic organic compounds are widespread contaminants of the environment; however, little is known concerning their potential dehalogenation by extracellular corrinoids. Our primary objective was to determine if corrinoids sorbed to soil colloids are redox active and thus viable electron transfer mediators of contaminant dehalogenation in reduced soils and sediments. Dicyanocobínamide, cyanocobalamin (vitamin B12), and aquocobalamin were sorbed onto Ca2+‐, K+‐, and Na+‐hectorite and sorption isotherms determined. Additional assessment of sorption reactions was performed using x‐ray diffraction (XRD) and infrared (IR) spectroscopy. Redox states of the sorbed corrinoids in hectorite suspensions were monitored using ultraviolet and visible (UV‐VIS) spectrophotometry. Corrinoid molecular size and charge, as well as the saturating cation, controlled corrinoid sorption. The XRD results indicated that Co corrinoids intercalated hectorite, expanding the basal spacing from 1.45 to 2.21 nm for Ca2+‐, 1.17 to 2.70 nm for K+‐, and 1.31 to 2.81 nm for Na+‐hectorite. The IR spectra of bound corrinoids yielded little information on binding mechanisms, but indicated that axial ligands remained intact. The central metal of bound corrinoids was reduced to Co(I) by Ti(III) and reoxidized to Co(III) by introduction of O2, thus demonstrating that redox activity of sorbed corrinoids was maintained and reversible. Microbially produced extracellular corrinoids may act as potential electron transfer mediators when in association with clays, possibly participating in the reductive dehalogenation of organic contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.