Abstract

The hydrogenation behavior of 3CaH 2+4MgB 2+CaF 2 composite was studied by manometric measurements, powder X-ray diffraction, differential scanning calorimetry and attenuated total reflection infrared spectroscopy. The maximum observed quantity of hydrogen loaded in the composite was 7.0 wt%. X-ray diffraction showed the formation of Ca(BH 4) 2 and MgH 2 after hydrogenation. The activation energy for the dehydrogenation reaction was evaluated by DSC measurements and turns out to be 162±15 kJ mol −1 H 2. This value decreases due to cycling to 116±5 kJ mol −1 H 2 for the third dehydrogenation step. A decrease of ca. 25–50 °C in dehydrogenation temperature was observed with cycling. Due to its high capacity and reversibility, this composite is a promising candidate as a potential hydrogen storage material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.