Abstract

The sorption and desorption processes of Se(VI) onto non-living Eichhornia crassipes (E. crassipes) and Lemna minor (L. minor) were evaluated. Different pH values of the initial Se solution (20 μg L−1) were tested at static conditions. At dynamic conditions of horizontal flow, biomass-packed columns (BPC) were estimated as prepared (pH 4) and unprepared (pH 6–7) and at different flow rates. The desorption process was tested using HCl (0.1 M) as the eluent. The maximum Se uptake took place at a pH of 4 for both biomasses. The lowest flow rate improves major Se removal due to the increase in contact time. The Se was desorbed from the biomass with elution efficiencies of 5 and 18 % for E. crassipes and L. minor, respectively. Nevertheless, more time was needed to increase these efficiencies and reach desaturation times. The breakthrough curves showed that unprepared E. crassipes and L. minor BPC at horizontal flow, with a flow rate of 6 and 4 mL min−1 respectively, had a biomass removal capacity of 0.135 and 0.743 μg g−1 correspondingly. The system of E. crassipes is more efficient, suggesting an ion exchange sorption mechanism. This demonstrates that non-living E. crassipes and L. minor have the capacity to remove Se from very dilute solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call