Abstract
Ecotoxicological impacts of organic pesticides on soil and aquatic ecosystems depend primarily on their behavior in soils. Actual pesticide knowledge is mostly restricted to soils from temperate climates, whereas knowledge of pesticide behavior in tropical soils is scarce. Here, the sorption behavior of two organophosphorous insecticides, parathion and cadusafos, was studied in three agricultural soil samples from central Mexico, Vertisols and Andosols. Using 14C-labeled substances, we assessed sorption and desorption properties in classical batch equilibrium and static soil incubation experiments. Our results show that cadusafos was less sorbed by the various soils (K d values 7.6–12.7 L kg−1) compared with parathion (K d values 38.6–74.9 L kg−1), despite similar log K ow values. Cadusafos exhibited a greater reversibility of sorption than parathion in both soil types. Time-dependent sorption was quantitatively significant, leading to a rapid decrease in the concentration of available insecticide. This finding is partly due to the formation of non-extractable, bound residues. The decrease in the available concentration of both insecticides was greater in the Andosol compared with the Vertisols. Soil organic matter clearly influenced the sorption behavior and availability of parathion. On the other hand, the sorption of cadusafos was more influenced by other soil properties such as clay content and cation exchange capacity. Calculation of residual insecticide levels in the soil solution suggests that both insecticides may have persistent toxic effects in the studied soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.