Abstract

Rhizosphere microbiota play a pivotal role in promoting plant growth and defending against pathogens, but their responses to abiotic environmental stress remain largely elusive. Here, we investigated the influences of low-N stress on rhizosphere bacteria of six sorghum cultivars in a glasshouse experiment. The alpha diversity of bacteria (as revealed by Shannon diversity and Chao1 richness indices) was remarkably lower in rhizosphere soils than in bulk soils, and was significantly higher under low-N stress than under N addition. Principal coordinates analysis revealed that the bacterial community compositions in rhizosphere soils were clearly separated from bulk soils, and the rhizosphere soils under low-N stress or with N fertilization were clearly separated, indicating that both rhizosphere effects and N fertilization impacted the rhizosphere bacterial community. Notably, the relative abundances of beneficial bacteria such as Bacillaceae and Streptomycetaceae significantly increased in rhizosphere soils under low-N stress, which had significantly positive correlations with the sorghum N uptake. The relative abundance of Nitrosomonadaceae in rhizosphere soils was significantly lower than that in bulk soils, while the relative abundance of Rhizobiaceae showed an opposite pattern. Taken together, our results suggested that sorghum rhizosphere effects can reduce soil bacterial diversity possibly through recruiting specific bacterial species under low N stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.