Abstract

A major challenge in sorghum intercropping systems is maintaining their yields compared to the yields of the solo crops, especially in arid and semi-arid regions. This study aimed to test the hypothesis that intercropping systems using sorghum (Sorghum bicolor (L.) Moench.) and Brachiaria sp. are viable means to increase sorghum production and soil carbon in the conservation systems. Field trials were conducted in the semi-arid region of Minas Gerais, Brazil, during two crop cycles of sorghum associated with different grasses (Andropogon gayanus—AG; Cenchrus ciliaris cv. Aridus—CCA; Cenchrus ciliaris cv. 131—CC; Brachiaria decumbents—BD; Brachiaria brizantha—BB; Brachiaria ruziziensis—BR; Panicum maximum—PM), using row spacings of 0.4 and 0.8 m. Panicles of sorghum (yield) and grass dry matter were collected to determine yields. Results showed that the addition of grasses in systems decreased the grain yield in all systems, except in the systems using sorghum with CCA in 0.4 m, AG in 0.8 m, or BR in 0.8 m. In the 0.4 m row spacing, the sorghum associations with CC, BB, or PM are greater alternatives to increase soil carbon. However, when the row spacing was increased, the sole sorghum was the best alternative to increase the carbon. In machine learning, sorghum systems with CCA and AG are better alternatives to increase the yields, while sorghum with CC, PM, BR, and BB increases the grass dry matter in soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.