Abstract
Sorghum forage is an alternative crop that is more adapted to drier conditions and more resistant than corn to drought conditions. Thus, sorghum forage maximizes water utilization. The objective of this study was to evaluate sorghum silage (SS), including digestibility and fermentation parameters, in precision-fed dairy heifers. Eight Holstein heifers (13.7±0.6mo of age and 364.8±17.64kg of body weight) fitted with rumen cannulas were used in a replicated 4×4 Latin Square design; treatments were 4 levels of forage to concentrate ratios (85:15, 75:25, 65:35, and 55:45). Rumen contents were sampled at various times to determine pH and volatile fatty acid concentrations. Dry matter (DM) and neutral detergent fiber (NDF) in situ degradation kinetics were compared between SS and corn silage (CS) diets. Fecal total collection was used to estimate apparent total-tract digestibility. Fecal grab samples at 0, 6, 12, and 18h after feeding were used to estimate total-tract starch digestibility. Amount of concentrate in the diet affected the time that heifers spent eating as well as rumen pH. When the concentrate proportion of the diet increased, eating time and rumen pH decreased linearly. Total volatile fatty acid concentrations were not affected by treatment, but butyrate increased as the proportion of concentrate increased in the diet. Digestibility of DM and starch were higher in diets with lower forage to concentrate ratio, but NDF, acid detergent fiber, and hemicellulose digestibility were not affected. Corn silage had greater DM and NDF digestibility than SS. Also, fractional rate of digestion was faster for CS than SS (2.78 vs. 2.42% per hour, respectively). We conclude that fecal grab samples are suitable for predicting starch digestibility in heifers given the starch levels studied. In addition, SS was an adequate alternative forage in precision-fed dairy heifers with outcomes very similar to CS-based rations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.