Abstract

With the aim at enhancing the sustainability of biomass production in the Mediterranean area, this paper analyzes, for the first time, the production of sorghum (Sorghum bicolor (L.) Moench) biomass for bioenergy production using urban treated wastewaters and bio-fertilization. For this purpose, the effects on biomass production of three different fertilizations (no-nitrogen control, biofertilizer, and mineral ammonium nitrate), four levels of constructed wetland (CW) wastewater restitutions (0%, 33%, 66% and 100%) of crop evapotranspiration (ETc) and three harvesting dates (at full plant maturity, at the initial senescence stage, and at the post-senescence stage) were evaluated in a two year trial. For bio-fertilization, a commercial product based on arbuscular mycorrhizal fungi was used. Mineral nitrogen (N) fertilization significantly increased dry biomass (+22.8% in the first year and +16.8% in the second year) compared to the control (95.9 and 188.2 g·plant−1, respectively). The lowest and highest biomass production, in 2008 and 2009, was found at 0% (67.1 and 118.2 g·plant−1) and 100% (139.2 and 297.4 g·plant−1) ETc restitutions. In both years, the first harvest gave the highest biomass yield (124.3 g·plant−1 in the first year and 321.3 g·plant−1 in the second), followed by the second and the third one. The results showed that in Mediterranean areas, constructed wetlands treated wastewaters, when complying with the European restrictions for their use in agriculture, may represent an important tool to enhance and stabilize the biomass of energy crops by recycling scarce quality water and nutrients otherwise lost in the environment.

Highlights

  • The competition for freshwater among agricultural, industrial, and civil uses has intensified over recent years

  • Around 20 million hectares of land are irrigated with wastewater [9,10], and this value could increase during the few decades as water demand intensifies

  • The experimental experimentalareaarea is characterized by a dry typical dry Mediterranean climate

Read more

Summary

Introduction

The competition for freshwater among agricultural, industrial, and civil uses has intensified over recent years. Agriculture is the largest consumer of world water resources [1,2], accounting for. In this context, an appropriate irrigation management and wastewater reuse, as a non-conventional water resource, can help by providing a proportion of the irrigation water and reducing pressure on conventional water resources [6,7,8]. Around 20 million hectares of land are irrigated with wastewater [9,10], and this value could increase during the few decades as water demand intensifies. According to Valipour [12], 46% of the world is not suitable for rainfed agriculture because of climate changes and other meteorological conditions

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.