Abstract
BackgroundSorafenib is a multi-kinase inhibitor for treating advanced hepatocellular and renal cell carcinomas by targeting various types of receptors and signaling molecules, including vascular endothelial growth factor receptors, platelet-derived growth factor receptor, and Raf-1. Sorafenib may cause diverse cutaneous adverse reactions, including hand-foot reaction, facial and scalp eruptions, alopecia and pruritus. However, the mechanism of these adverse effects has not been well-investigated. ObjectiveMast cells (MCs) are reported to be associated with various types of skin diseases. To investigate the mechanism of sorafenib-induced cutaneous adverse effects, we focused on MCs in situ. MethodsWe evaluated skin samples of organ cultured normal human skin treated with sorafenib using c-Kit, tryptase, and stem cell factor (SCF), Ki-67, and TUNEL immunohistochemistry as well as quantitative real-time polymerase chain reaction to evaluate MC number, degranulation, proliferation, and apoptosis in situ. ResultsSorafenib significantly increased the number and degranulation of skin-type MCs compared with the vehicle-treated control group in situ. However, sorafenib did not affect MC proliferation and apoptosis, suggesting that it stimulated MC maturation from resident precursors. Furthermore, sorafenib increased SCF expression in situ. The increase in MC number by sorafenib was abrogated by co-administration of SCF neutralizing antibody or the phosphoinositide 3-kinase (PI3K) inhibitor, wortmannin, but not the mitogen-activated protein kinase (MAPK)/extracellular signal–regulated kinase (ERK) kinase (MEK) inhibitor, PD98059. This suggests that SCF is involved in sorafenib-induced MC maturation. In addition, the compensatory upregulation of PI3K-signaling from inhibition of MAPK signaling by sorafenib might stimulate MC maturation in situ.We also evaluated MCs within the skin samples from patients with drug eruptions by sorafenib administration. The total and degranuated MCs number as well as SCF expression was significantly increased compared to healthy individuals. ConclusionOur results contribute to a better understanding of the mechanism by which sorafenib induces adverse cutaneous reactions via activation of skin-type MC degranulation and maturation. This activation appears to be related to PI3K signaling and SCF production, which could be a new targets for treating sorafenib-induced adverse reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.