Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world with increasing incidence. Chemotherapy is required for HCC patients after receiving surgical resection. Serious off-target induced side effects and systemic toxicity limit the clinical utility of drugs. Targeting therapeutic nanomedicine is an innovative strategy for enhancing drug delivery efficiency and reducing side effects. Here, we successfully formulated nanocarriers to encapsulate sorafenib, an FDA approved drug for treatment of HCC. Sorafenib is encapsulated with an entrapment efficiency >80% over 20 days. The effective aqueous solubility is improved over 1900-fold. The release ratio in vitro is characterized by a half-life of T1/2 = 22.7 h. The peak target-to-background ratio for nanocarrier uptake by tumor occurs at 24 h post-injection, and is significantly greater for the target peptide versus controls. Ex vivo biodistribution confirms the in vivo results. Tumor regression is significantly greater for the target peptide versus controls after 21 days of therapy. No acute toxicity is found by blood chemistry or necropsy. In summary, a peptide specific for GPC3 has been identified, and used to modify the surface of a nanocarrier that encapsulates sorafenib with high entrapment efficiency. Regression of HCC xenograft tumors showed promise for targeted drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.