Abstract
Quiescent cancer cells in malignant tumors can withstand cell-cycle active treatment and cause cancer spread and recurrence. Three-dimensional (3D) cancer cell models have led to the identification of oxidative phosphorylation (OXPHOS) as a context-dependent vulnerability. The limited treatment options for advanced hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) metastatic to the liver include the multikinase inhibitors sorafenib and regorafenib. Off-target effects of sorafenib and regorafenib are related to OXPHOS inhibition; however the importance of this feature to the effect on tumor cells has not been investigated in 3D models. We began by assessing global transcriptional responses in monolayer cell cultures, then moved on to multicellular tumor spheroids (MCTS) and tumoroids generated from a CRC patient. Cells were treated with chemotherapeutics, kinase inhibitors, and the OXPHOS inhibitors. Cells grown in 3D cultures were sensitive to the OXPHOS inhibitor nitazoxanide, sorafenib, and regorafenib and resistant to other multikinase inhibitors and chemotherapeutic drugs. Furthermore, nitazoxanide and sorafenib reduced viability, regrowth potential and inhibited mitochondrial membrane potential in an additive manner at clinically relevant concentrations. This study demonstrates that the OXPHOS inhibition caused by sorafenib and regorafenib parallels 3D activity and can be further investigated for new combination strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.