Abstract
ABSTRACT The stellar occultation technique provides competitive accuracy in determining the sizes, shapes, astrometry, etc., of the occulting body, comparable to in-situ observations by spacecraft. With the increase in the number of known Solar system objects expected from the LSST, the highly precise astrometric catalogs, such as Gaia, and the improvement of ephemerides, occultations observations will become more common with a higher number of chords in each observation. In the context of the Big Data era, we developed sora, an open-source python library to reduce and analyse stellar occultation data efficiently. It includes routines from predicting such events up to the determination of Solar system bodies’ sizes, shapes, and positions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.