Abstract

Xanthohumol (XN) has numerous compelling physiological activities, but the poor solubility and stability severely limit its utilization. Therefore, a microemulsion (ME) delivery system based on biosurfactant sophorolipids (SLs) was established and its improvement on physicochemical properties of XN was investigated. The results showed that the systems increased the solubility of XN by about 4000 times, and its half-life during storage was extended to over 150 days. Partial replacement of Tween 80 with SL did not greatly affect their ability to form O/W subregions (in the high aqueous phase), but further improved the solubilization efficiency, storage stability, and antioxidant properties of XN. In vitro models revealed the release profile of XN from the systems followed non-Fickian diffusion, and the ME structure markedly strengthened its digestive stability and bioaccessibility. These results indicated that SL-based ME systems had great potential as a green solubilization and delivery method for XN and other hydrophobic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call