Abstract

The equipment and the process for soot sleeving of optical fiber preforms made by the modified chemical vapor deposition (MCVD) method has been developed. The equipment consists of a soot-sleeving lathe that is used for deposition of soot glass particles onto the surface of an MCVD core preform and a separate furnace that is used for drying and sintering the deposited porous glass layer. An outline of the equipment is presented. This equipment has then been used to study the basic parameters of flame hydrolysis deposition as well as sintering of the porous layer. The raw material and the fuel gas flow as well as the substrate diameter proved to be the most important parameters affecting the process. The basic knowledge achieved is used to optimize the process for three different preform sizes. In the soot-sleeving process for 80-km optical fiber preforms, an average deposition rate of 5.2 g/min is achieved with a double burner. The overall quality of the drawn fiber proved to be good. The typical attenuations were 0.330 and 0.215 dB/km at 1310- and 1550-nm wavelengths, respectively. The geometry of the drawn fibers was found to be very good.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.