Abstract

An original approach of laser-induced incandescence consisting in the simultaneous recording of the two-color-time-resolved and 2D LII signal is described in this paper. The application of this approach in an atmospheric pressure diffusion flame fueled with isooctane as well as inside the combustion chamber of a diesel engine is presented. Soot volume fraction and primary particle diameters are calculated, and the results are discussed. The mean diameter estimated by fitting the LII modeled curve on the experimental one is compared with the results obtained through soot sampling and microscope analyzing. The influence of the thermal accommodation coefficient and soot refractive index function is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.