Abstract

The plasma-catalytic oxidation of soot was studied over zeolite-supported vanadium catalysts, while four types of zeolites (MCM-41, mordenite, USY and 5A) were used as catalyst supports. The soot oxidation rate followed the order of V/MCM-41 > V/mordenite > V/USY > V/5A, while 100% soot oxidation was achieved at 54th min of reaction over V/MCM-41 and V/mordenite. The CO2 selectivity of the process follows the opposite order of oxidation rate over the V/M catalyst. A wide range of catalyst characterizations including N2 adsorption–desorption, XRD, XPS, H2-TPR and O2-TPD were performed to obtain insights regarding the reaction mechanisms of soot oxidation in plasma-catalytic systems. The redox properties were recognized to be crucial for the soot oxidation process. The effects of discharge power, gas flow rate and reaction temperature on soot oxidation were also investigated. The results showed that higher discharge power, higher gas flow rate and lower reaction temperature were beneficial for soot oxidation rate. However, these factors would impose a negative effect on CO2 selectivity. The proposed “plasma-catalysis” method possessed the unique advantages of quick response, mild operation conditions and system compactness. The method could be potentially applied for the regeneration of diesel particulate filters (DPF) at low temperatures and contribute to the the emission control of diesel engines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call