Abstract

Focusing on the uncontrolled discharge of organic dyes, a known threat to human health and aquatic ecosystems, this work employs a dual-functional catalyst approach, by immobilizing a synthesized bismuth sulfur iodide (BiSI) into a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymeric matrix for multifunctional water remediation. The resulting BiSI@PVDF nanocomposite membrane (NCM), with 20 wt% filler content, maintains a highly porous structure without compromising morphology or thermal properties. Demonstrating efficiency in natural pH conditions, the NCM removes nearly all Rhodamine B (RhB) within 1 h, using a combined sonophotocatalytic process. Langmuir and pseudo-second-order models describe the remediation process, achieving a maximum removal capacity (Qmax) of 72.2 mg/g. In addition, the combined sonophotocatalysis achieved a degradation rate ten and five times higher (0.026 min−1) than photocatalysis (0.002 min−1) and sonocatalysis (0.010 min−1). Furthermore, the NCM exhibits notable reusability over five cycles without efficiency losses and efficiencies always higher than 90%, highlighting its potential for real water matrices. The study underscores the suitability of BiSI@PVDF as a dual-functional catalyst for organic dye degradation, showcasing synergistic adsorption, photocatalysis, and sonocatalysis for water remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.