Abstract

Advanced oxidation processes are promising techniques for water remediation and degradation of micropollutants in aqueous systems. Since single processes such as sonolysis and photocatalysis exhibit limitations, combined AOP systems can enhance degradation efficiency. The present work addresses the synergistic intensification potential of an ultrasound-assisted photocatalysis (sonophotocatalysis) for bisphenol A degradation with a low-frequency sonotrode (f = 20 kHz) in a batch-system. The effects of energy input and suspended photocatalyst dosage (TiO2-nanoparticle, m = 0–0.5 g/L) were investigated. To understand the synergistic effects, the sonication characteristics were investigated by bubble-field analysis, hydrophone measurements, and chemiluminescence of luminol to identify cavitation areas due to the generation of hydroxyl radicals. Comparing the sonophotocatalysis with sonolysis and photocatalysis (incl. mechanical stirring), synergies up to 295% and degradation rates of up to 1.35 min−1 were achieved. Besides the proof of synergistic intensification, the investigation of energy efficiency for a degradation degree of 80% shows that a process optimization can be realized. Thus, it could be demonstrated that there is an effective limit of energy input depending on the TiO2 dosage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call