Abstract

Several methods have been used to quantify human movement at different levels, from coordinated multi joint movements to those taking place at the single muscle level. These methods are developed either in order to allow us to interact with computers and machines, or to use such technologies for aiding rehabilitation among those with mobility impairments or movement disorders. Human machine interfaces typically rely on some existing human movement ability and measure it using motion tracking or inertial measurement units, while the rehabilitation applications may require us to measure human motor intent. Surface or implanted electrodes, electromyography, electroencephalography, and brain computer interfaces are beneficial in this regard, but have their own shortcomings. We have previously shown feasibility of using ultrasound imaging (Sonomyography) to infer human motor intent and allow users to control external biomechatronic devices such as prosthetics. Here, we asked users to freely move their hand in three different movement patterns, measuring their actual joint angles and passively computing their Sonomyographic output signal. We found a high correlation between these two signals, demonstrating that the Sonomyography signal is not only user-controlled and stable, but it is closely linked with the user's actual movement level. These results could help design wearable rehabilitation or human computer interaction devices based on Sonomyography to decode human motor intent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.