Abstract

The degradation of chitosan by means of ultrasound irradiation and its combination with heterogeneous (TiO 2) was investigated. Emphasis was given on the effect of additives on degradation rate constants. Ultrasound irradiation (24 kHz) was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. The extent of sonolytic degradation increased with increasing ultrasound power (in the range 30–90 W), while the presence of TiO 2 in the dark generally had little effect on degradation. On the other hand, TiO 2 sono-photocatalysis led to complete chitosan degradation in 60 min with increasing catalyst loading. TiO 2 sonophotocatalysis was always faster than the respective individual processes due to the enhanced formation of reactive radicals as well as the possible ultrasound-induced increase of the active surface area of the catalyst. The degraded chitosans were characterized by X-ray diffraction (XRD), gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) spectroscopy and average molecular weight of ultrasonicated chitosan was determined by measurements of relative viscosity of samples. The results show that the total degree of deacetylation (DD) of chitosan did not change after degradation and the decrease of molecular weight led to transformation of crystal structure. A negative order for the dependence of the reaction rate on total molar concentration of chitosan solution within the degradation process was suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.