Abstract
Diaphragmatic breathing patterns under resistive loading remain poorly documented. To our knowledge, this is the first study assessing diaphragmatic motion under conditions of inspiratory resistive loading with the use of sonography. We assessed diaphragmatic motion during inspiratory resistive loading in 40 healthy volunteers using M-mode sonography. In phase I of the study, sonography was performed during normal quiet breathing without respiratory loading. In phase II, sonography was performed after application of a nose clip and connection of the subjects to a pneumotachograph through a mouth piece. In phase III, the participants were assessed while subjected to inspiratory resistive loading of 50 cm H(2)O/L/s. Compared with baseline, the application of a mouth piece and nose clip induced a significant increase in diaphragmatic excursion (from 1.7 to 2.3 cm, P < 0.001) and a decrease in respiratory rate (from 13.4 to 12.2, P < 0.01). Inspiratory resistive loading induced a further decrease in respiratory rate (from 12.2 to 8.0, P < 0.01) and a decrease in diaphragmatic velocity contraction (from 1.2 to 0.8 cm/s, P < 0.01), and also an increase in tidal volume (from 795 to 904 mL, P < 0.01); diaphragmatic excursion, however, did not change significantly. Inspiratory resistive loading induced significant changes in diaphragmatic contraction pattern, which mainly consisted of decreased velocity of diaphragmatic displacement with no change in diaphragmatic excursion. Tidal volume, increased significantly; the increase in tidal volume, along with the unchanged diaphragmatic excursion, provides sonographic evidence of increased recruitment of extradiaphragmatic muscles under inspiratory resistive loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.