Abstract

Ultrasound is acoustic waves that can penetrate deeply into tissue in a focused manner with limited adverse effects on cells. As such, ultrasound has been widely used for clinical diagnosis for several decades. Ultrasound induces bioeffects in tissues, providing potential value in therapeutic applications. However, the intrinsic millimeter scale of the ultrasound focal zone represents a challenge with respect to minimizing the illuminated regions to perturb target cells in a precise manner. To control a specific cell population or even single cells, sonogenetic tools that combine ultrasound and genetic methods have been recently developed. With these approaches, several ultrasound-responsive proteins are heterologously introduced into target cells, which enhances the cells' ability to respond to ultrasound stimulation. With optimization of the ultrasound parameters, these tools can specifically manipulate activities in genetically defined cells but not in unmodified cells present in the ultrasound-illuminated regions. These approaches provide new strategies for noninvasive modulation of target cells in various therapeutic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call