Abstract
The emergence of immune checkpoint inhibitors (ICI's) in the past decade has proven transformative in the area of immuno-oncology. The PD-1/PD-L1 axis has been particularly well studied and monoclonal antibodies developed to block either the receptor (anti PD-1) or its associated ligand (anti PD-L1) can generate potent anti-tumour immunity in certain tumour models. However, many "immune cold" tumours remain unresponsive to ICI's and strategies to stimulate the adaptive immune system and make these tumours more susceptible to ICI treatment are currently under investigation. Sonodynamic therapy (SDT) is a targeted anti-cancer treatment that uses ultrasound to activate a sensitiser with the resulting generation of reactive oxygen species (ROS) causing direct cell death by apoptosis and necrosis. SDT has also been shown to stimulate the adaptive immune system in a pre-clinical model of colorectal cancer. In this manuscript, we investigate the ability of microbubble mediated SDT to control tumour growth in a bilateral tumour mouse model of pancreatic cancer by treating the target tumour with SDT and observing the effects at the off-target untreated tumour. The results demonstrated a significant 287% decrease in tumour volume when compared to untreated animals 11 days following the initial treatment with SDT, which reduced further to 369% when SDT was combined with anti-PD-L1 ICI treatment. Analysis of residual tumour tissues remaining after treatment revealed increased levels of infiltrating CD4+ and CD8+ T-lymphocytes (respectively 4.65 and 3.16-fold more) in the off-target tumours of animals where the target tumour was treated with SDT and anti-PD-L1, when compared to untreated tumours. These results suggest that SDT treatment elicits an adaptive immune response that is potentiated by the anti-PD-L1 ICI in this particular model of pancreatic cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.