Abstract

Heterogeneous green catalysis by using magnetically separable nanometal–oxide catalysts has become a subject of prime focus recently. PXRD (powder X-ray diffraction), FESEM (field emission scanning electron microscopy), and HRTEM (high-resolution tunneling electron microscopy) with IR and Raman spectroscopy are applied to analyze the structural and microstructural properties of nanosized (∼15.3 nm) CuFe2O4 synthesized by both sonochemical and mechanochemical processes. The sonochemical process provides a better uniformity of sizes of the nanoparticles (NPs). Rietveld refinement with the PXRD pattern reveals the inverse spinel-like architecture of CuFe2O4 NPs. The Raman spectra also indicate the phase purity of the synthesized material. The static magnetic measurements are performed at different magnetic fields and temperature ranges from 300 to 5 K, which confirms the existence of the ferrimagnetic phase mixed with some finer superparamagnetic (SPM) nanophases within the sample. Unsaturated magnetization is observed even at an applied 5 T magnetic field for the presence of spin-canting nature in the partially inverted copper ferrite phases at the surfaces of the nanoparticles. Now, these coupled magnetic CuFe2O4 NPs are used as a heterogeneous catalyst for three-component Huisgen 1,3-dipolar cycloaddition click reaction in aqueous media. By this catalyst system, we were able to couple alkyl halide, epoxide, or boronic acid with alkynes efficiently to furnish 1,4-disubstituted 1,2,3-triazoles in excellent yields within very short reaction time. The test for heterogeneity, reusability, and reproducibility of the catalyst has also been performed successfully without prominent decrease in yield up to the fifth cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.