Abstract

Transition metal phosphates have become of great interest as cathode materials for lithium ion batteries because of their high voltage, low cost and environmental friendliness. However, their low-intrinsic conductivity presents a major drawback to practical implementation. Here, nanocrystallization of VOPO4 · 2H2O was first realized by a sonication-assisted intercalation-split mechanism in order to increase its diffusion coefficient and surface area contacting with electrolyte thus improving its capacity and cyclability; then nanocompounding of the above split nanocrystals and acid-functionalized multiwalled carbon nanotubes to form the resulting nanocomposites was successfully achieved by an adsorption-reintercalation mechanism to increase their conductivity thus enabling them to discharge at high rate with high efficiency. As expected, nanosized VOPO4 · 2H2O possesses longer discharge plateau (average discharge voltage: 3.7 V), higher capacity (93.4% of the theoretical capacity) and much better cyclability (retain 95.1% of the first discharge capacity after 50 cycles) than microsized VOPO4 · 2H2O. Furthermore, the relatively high-rate capability of the nanocomposites, retaining 83% of the first discharge capacity, is remarkably improved compared with VOPO4 · 2H2O microcrystals (retain only 31.7%). In brief, the use of nanocrystallization and nanocompounding techniques enables the high voltage, low cost, environmentally benign VOPO4 · 2H2O to show the prospective signs for the future practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.