Abstract

A new nanocomposite consisting of lanthanum ferrite nanoparticles (LaFeO3 NPs) integrated with carbon nanotubes (CNTs) was fabricated via facile sonochemical approach. The engineered nanocomposite was applied to simultaneously determine acetaminophen (ACP) and dopamine (DA) in a binary mixture. The LaFeO3 NPs@CNT probe possesses several advantages such as superior conductivity, large surface area, and more active sites, improving its electrocatalytic activity towards ACP and DA. Under optimized conditions, the anodic peak currents (Ipa) linearly increased with increasing concentration of ACP and DA in the range 0.069-210 µM and 0.15-210 µM, respectively. The sensitivity of LaFeO3 NPs@CNTs/glassy carbon electrode (GCE) for detecting ACP and DA is 7.456 and 5.980 μA·μM-1·cm-2, respectively. The detection limits (S/N = 3) for ACP and DA are 0.02 μM and 0.05 μM, respectively. Advantages of LaFeO3 NPs@CNTs/GCE for the detection of ACP and DA include wide linear ranges, low-detection limits, good selectivity, and long-term stability. The as-fabricated electrode was applied to determine ACP and DA in pharmaceutical formulations and human serum samples with recoveries ranging from 97.7 to 103.3% and an RSD that did not exceed 3.7%, confirming the suitability of the proposed sensor for the determination of ACP and DA in real samples. This study not only presents promising opportunities for enhancing the sensitivity and stability of electrochemical sensors used in the detection of bioanalytes but also significantly contributes to the progress of unique and comprehensive biochemical detection methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.