Abstract

In this work, cobalt(II/III) oxide (Co3O4) nano/microflowers were practically synthesized in laboratory conditions. Adsorbence properties of the nanoflowers were investigated for the removal of cadmium and chromium heavy metal ions. To assess the chemical and morphological characteristics of Co3O4 nanoflowers, Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), field emission electron microscopy (FESEM), Energy dispersive spectroscopy (EDS), and was used. To determine the adsorbence mechanism in detail, eluent concentration, eluent type, solution pH, adsorbent amount, solution volume, and adsorption duration were studied. In these assessments, flame atomic absorption spectroscopy (FAAS) was used. For Cr6+, adsorption optimum parameters were determined as 3M HNO3, pH 6.5, 150mg, 30mL, 60min. For Cd2+, optimum parameters were determined as 3M HNO3, pH 6.0, 100mg, 10mL, 30min. Co3O4, nanoflowers are eco-friendly adsorbent materials for the adsorption of Cd6+ and Cd2+ heavy metal ions since the production method is affordable and practical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call