Abstract

In this study, a biocompatible folate-decorated reductive-responsive carboxymethylcellulose-based nanocapsules (FA-RCNCs) were designed and prepared via sonochemical method for targeted delivery and controlled release of hydrophobic drugs. The shell of FA-RCNCs was cross-linked by disulfide bonds formed from hydrosulfuryl groups on the thiolated carboxymethylcellulose (TCMC) and encapsulated hydrophobic drug dispersed in the oil phase into nanocapsules. Moreover, the size and morphology of drug loaded FA-RCNCs were characterized by DLS, SEM and CLSM which indicated that the synthesized nanocapsules have suitable size range and excellent stability for circulating in the bloodstream. The drug release rate of FA-RCNCs could be controlled by adjusting their sizes and shell thickness, which could be dominated by the concentration of TCMC and sonochemical conditions. Furthermore, the obtained FA-RCNCs could be ingested into Hela cells via folate-receptor (FR)-mediated endocytosis and quickly release drugs under reductive environment, which demonstrated that FA-RCNCs could become potential hydrophobic drugs carries for cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.