Abstract

The influence of surface nanotopography of sonochemically generated mesoporous titania coatings (TMS) on the adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs) have been investigated in vitro for the first time. It has been revealed that adhesion and proliferation of hMSCs is higher on disordered TMS surfaces compared to smooth polished titania surface after five days of incubation. Surprisingly, the sonochemically generated disordered nanotopography induces the differentiation of hMSCs into osteogenic direction in the absence of osteogenic medium in 14 days of incubation. Thus sonochemical nanostructuring of titanium based implants stimulates the regenerative process of bone tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.